

Decarbonization and exploring the latest trends of heat pumps shaping sustainable building solutions

IENE 2025

Antonis Komninos Product Manager Heating & FCU

MEGATRENDS FUELING **STEP-CHANGE IN GROWTH**

Climate Change and Sustainability

- EU commitment to cut emissions by 55% by 2030
- ~40% of global carbon emissions come from buildings
- Up to 30% efficiency gains from smart buildings; only 20% of thermostats in Europe are smart / connected

- Targeted reduction in reliance on Russian natural gas
- ~60% of European consumers concerned about financial impact of rising energy costs
- ~70% of EU consumers taking actions to reduce energy consumption at home

Government Regulation and Incentives

- Adding 10M heat pumps in the next five years, facilitated by RePowerEU
- Large-scale climate subsidies across Europe, e.g., €600bn in Fitfor55 EUprogram
- 17 European countries have announced or implemented bans on heating systems that use fossil fuel

Eco-Design & F-Gas

Increase energy efficiency

AND

Reduce refrigerant emissions

GWP stands for Global Warming Potential

Reduce use of HFC's

- Phase down
- Traceability

Updates

Accelerated phase-down of F-Gas quota in 3 steps between 2025 and 2030 (24%, 12%, 5%).

 EU Commission can allow additional guota in 2025-2029 if HP deployment targets of REPowerEU initiative are threatened

- GWP Chillers < 750 in 2027
- < 150 in 2030 (750 if safety reasons) GWP HP
- ⇒ 2030 : Potential risk on quota / phase out for GWP > 150 (R32, R454B, R513A, R515B)

			2025	2027	2029	2030	2032	2033	2035	Exception
Chillers	0-12 kW		As today	<150	150	150	Nat	Nat	Nat	Except when required to meet safety standards
Grimoro	>12 kW		As today	<750	750	750	750	750	750	Except when required to meet safety standards
Heat Pumps &	0-12 kW		As today	<150	150	150	Nat	Nat	Nat	Except when required to meet safety standards with 750 GWP limit
RTU & monobloc	>12-50 kW		As today	<150	150	150	150	150	150	Except when required to meet safety standards with 750 GWP limit
package units	>50 kW		As today	As today	As today	<150	150	150	150	Except when required to meet safety standards with 750 GWP limit
										-
	Less than 3 kg	g	<750	750	750	750	750	750	750	No exception
Split air- conditioning and	0-12kW	A2A	As today	As today	<150	150	150	150	Nat	Except when required to meet safety standards
heat pump equipment	0-12kW	A2W	As today	<150	150	150	150	150	Nat	Except when required to meet safety standards
	>12kW		As today	As today	<750	750	750	<150	150	Except when required to meet safety standards

WHAT IS NEXT

On 7 February 2023 the European Chemicals Agency ("ECHA") published a comprehensive dossier concerning a ban on around 10,000 per- and polyfluoroalkyl substances ("**PFAS**").

The restriction proposal aims to restrict the manufacture, placing on the market and use of substances harmful to human health and the environment, and to limit their associated risks. The ban is to be implemented under Regulation (EU) No 1907/2006 ("REACH"). An initial open consultation has been completed, and ECHA's scientific committees are now examining the potential impacts of the restriction proposal.

- **PFAS** are widely used, long lasting chemicals, components of which break down very slowly over time. •
- Because of their widespread use and their persistence in the environment, many **PFAS** are found in the blood of people and animals all over • the world and are present at low levels in a variety of food products and in the environment.
- **PFAS** are found in water, air, fish, and soil at locations across the nation and the globe. •
- Scientific studies have shown that exposure to some **PFAS** in the environment may be linked to harmful health effects in humans and animals.
- There are thousands of **PFAS** chemicals, and they are found in many different consumer, commercial, and industrial products. This makes it challenging to study and assess the potential human health and environmental risks.

Trifluoroacetic acid (TFA) meets the definition of PFAS because it has a -CF3 (methyl) radical on the molecule.

In order to reduce direct emissions of refrigerants new chemical low-GWP refrigerants were introduced to the market and advertised as a promising solution.

Already the previous HFC refrigerants (e.g. R134a) were found to yield trifluoroacetic acid (TFA) as a degradation product when released to the atmosphere (Wallington et al., 1996) causing concerns for **environmental** safety.

Some of the newly introduced low-GWP refrigerants have higher yields of TFA (WMO, 2011) and therefore have a higher potential of polluting the environment.

Refrigerant	Formula / Composition (%)	GWP	TFA yield
R134a	-	3,900	10 – 20 %
R1234yf	_	4	100 %
R1234ze(E)	-	7	< 10 %
R513A	R1234yf/134a (56/44)	573	~ 62%
R515B	R1234ze/R227ea (91.1/8.9)	293	< 18%
R454B	R32/1234yf (68.9/31.1)	466	~ 31%
R32	_	675	0%
R454C	R32/R1234yf (21,5/78,5)	148	??

*Trifluoroacetic acid (TFA; CF3CO(O)H) is a short-chain per-fluorinated carbolic acid (scPFCA, CnF2n+1CO2H with $n \leq 3$), that has a high solubility in water, is very persistent in the **environment** and considered to be very mobile (Solomon et al., 2016).

**Trifluoroacetic acid (TFA), acts on hepatocyte proteins to produce trifluoroacetylated components.

A severe type of liver injury is associated with an acute increase of liver enzymes, alanine aminotransferase (ALT) and aspartate aminotransferase (AST), which remain elevated for one to two weeks following exposure and resolve without treatment (Wright et al., 1975).

Bundesamt (2020).

Similar to the ALT concentrations measured in the study used by Umwelt

^{*}Source: IIF-IIR, Morlet, V., Coulomb, D., & Dupont, J. L. (2017), Global Ozone Research and Monitoring Project–Report No. 52 **Source: Revolution Industriekälte GmbH, Thomas Frank, 22.02.2021, WMO: World Meteorological Organization

Single Component I

Refrigerant

R-134a

R-1234yf R-1234ze(E)

R-1233zd(E)

Possibly B

WHAT IS NEXT Regulation (EU) No 1907/2006 ("REACH")

Formula

CH2F2

CH2FCH2F

CH3CHF2

CHF=CHF

C3H6

C3H8

CO2

NH3

N2

Media briefing: proposal to restrict PFAS chemicals in the EU

Next steps

PFAS definition

EU will most probably adopt the OECD's definition which will impact the existing refrigerants such as below

Refrigerant

R-32

R-152

R-152a

R-744

R-1132(E)

R-1270 (propene)

R-290 (propane)

R-717 (ammonia)

R-728 (nitrogen)

Single Component Refrigerants

Non-Concerned

Time line Estimated: Mid-2027 effective

cluding 6 months + 60 days stakeholder 22 March 2023 2025 22 September 2023 2024 Start of consultation End of 6 months COM decision Entry into Force consultation 5 April 2023 Saua: KEM apar the same

Defrigerante	
an	
	Re
Formula	1.0
H2FCF3	
F3CF=CH2	1
F3CH=CFH	
F3CH=CHCI	F
	R-4
0	1
	F
22	

2026/2021 effective

The OECD (Organisation for Economic Co-operation and Development) is a forum and knowledge hub for data, analysis and best practices in public policy. We work with over 100 countries across the world to build stronger, fairer and cleaner societies - helping to shape better policies for better lives.

Blended Refrigerants Possibly Ban						
igerant	Components	Formula				
	R-32	CH2F2				
410A	R-125	CHF2-CF3				
	R-125	CHF2-CF3				
404A	R-143a	CH3CF3				
	R-134a	CH2FCF3				
	R-32	CH2F2				
452A	R-125	CHF2-CF3				
	R-1234yf	CF3CF=CH2				
44.00	R-32	CH2F2				
HAVB/C	R-1234yf	CF3CF=CH2				
5404	R-1234yf	CF3CF=CH2				
513A	R-134a	CH2FCF3				
515B	R-1234ze(E)	CF3CH=CF H				
	R-227ea	CF3CHFCF3				

HP Technologies (Residential)

Twin Rotary DC Compressor with Liquid Injection

• High precision Controller for Frequency of compressor for absolute control.

HP Technologies (Commercial)

Portfolio Transformation

Portfolio Transformation

Case Studies

Decarbonization, Expanding the Concept

City:	٦
Туре:	ŀ
Size:	2
Total DHW:	00
Weather file:	ŀ
DWH profile:	ŀ
Tap water temp. profile:	E
Simulation analysis:	8
A/C and W/C HP data:	ſ
Oil / Gas Boiler data:	(

Thessaloniki - Greece Hospital 210 beds 35 m³ per day @ 60 °C (Engineering Toolbox data) ASHRAE IWEC2 ASHRAE(daily), ADEME guide technique (annually) Buried @ 1.3 m (8760 hours simulation) 8760 hours (in house SW / Charging Storage Tank) Manufacturer selection and part load data COMNET Manual (Building Descriptions Reference)

35 °C

30 °C

Buffer Tank

$Fuel_{design} \times FHeatPLC(Q_{partload}, Q_{rated})$
$\left(\boldsymbol{a} + \boldsymbol{b} \times \frac{\boldsymbol{Q}_{partload}}{\boldsymbol{Q}_{rated}} + \boldsymbol{c} \times \left(\frac{\boldsymbol{Q}_{partload}}{\boldsymbol{Q}_{rated}} \right)^2 \right)$
The Fuel Heating Part Load Efficiency Curve
The fuel consumption at part load conditions (Btu/h
The fuel consumption at design conditions (Btu/h)
The boiler capacity at part load conditions (Btu/h)
The boiler capacity at design conditions (Btu/h)
Constant, 0.082597
Constant, 0.996764
Constant, -0.079361

Probability of Legionella positive events at different hot water tap temperatures Md Rasheduzzaman, Rajveer Singh, Charles N. Haas, Patrick L. Gurian Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, USA

Key findings

- References
- 2009
- Department of the Interior

- Scale reduces energy efficiency of the water heater by up to 50% - Water temperature decreases 5°C with a limescale thickness of 2mm - The water heater's useful life can be reduced by as much as 50% through scale build-up - 0.5 mm of hard scale increases fuel costs by 9.4%

i) Battelle Memorial Institute, Columbus, OH, Study on Benefits of Removing Hardness (calcium & magnesium ions) from a water supply,

ii) Influence of Limescale on Heating Elements Efficiency

http://www.comsol.it/conference2013/europe/abstract/id/15419/pezzin_abstract.pdf

iii) Ministry of Health UK, Report of the Subcommittee of the Central Advisory Water Committee, 1949 iv) The Office of Saline Water, U S

Advantages

Closed loop hot water system Lower cost of storage tank (no internal HE) Easy scale and legionella control Longer life of Storage Tanks

Disadvantages

Remote PHE first cost Remote PHE maintenance Recirculation Pump higher head

General Data

City Name GR_THESSAL	-ONIKI(AP)						
Profile Hospital_new Monthly factors							
DHW Max Consumption m ³ per Day @ 60 °C 35.00							
Building type	Hospital						
Heat Pump capacity kW		428					
Heat Pump min HWST °C		75					
Heat Pump max daily operating hou	ırs (in average)	4.2					
Daily max DWH volume It		35,000					
Daily max DWH power kW		409					
Daily max DWH energy kWh (in aver	rage)	2,044					
Storage tanks arrangement	Stratified Storage Tank Cus	tom Made					
Storage capacity factor "X"		0.6					
Storage stratification efficiency %	98						
Storage recovery time (in average)	hours	0.57					
DHW temperature set point °C		60					
Storage temperature set point °C		75					
Storage temperature dead band $^{\circ}$ C		13					
PHE approach (Storage - DHW) [°] C		2					
PHE approach (Heat Pump - Storage	0						
61XWH starts @ 63 oC and ends @ 7	12						
Proposed 1 total storage volume It		21,500					
Proposed 2 total storage volume It Volume for 5 minutes 0							
Selected total storage volume It operation of 61XWH 16,000							
61XWH min requested load %	and 4 oc water Di	52.32					
Buffer Tank with baffles Volume (U	Buffer Tank with baffles Volume (USX EDGE 60HP side) It 7,400						
Warning Storage	and						

Water to Water Heat Pump								
Type 61XWHHZE03								
CDS Supply	Water Temperature °C	75						
EVP Supply	EVP Supply Water Temperature °C 30							
61XWHHZE)3 min unload %	50						
EVP Variable Water Flow								
CDS Variable Water Flow								
Ext Piping C	Ext Piping CW ΔP kPa (Var Flow) 45							
Ext Piping HW ΔP kPa (Cnst Flow) 40								
Secondary CW Piping Dsgn ΔT °C 5								
Secondary I	Secondary HW Piping Dsgn ΔT °C 5							
Water Pum	p total eff. %	0.7						

Heat Pump is Loading Storage tank

	Air Cooled Heat Pump					
ype USX EDGE 60HP STL						
SX EDGE 60HP min unload % 25						
xt Pipe Ds	5					
econdary Piping Design ΔT °C 5						
Vater Pum	p total eff. %	0.7				

Burner BoilerTypeDieselPropozed Boiler Size kW400Boiler Size kW400Burner min unload %60Water Pump total eff. %0.7

Boiler / Burner

Water Cooled Heat Pump

Air Cooled Heat Pump

Storage and Buffer Tanks

Decarbonization – Hot Water

Rur He	nning Cos at Pumps	t									F	Running Co oiler / Buri
Month	Operation	Heating Load kWh	61XWH System Total kWh _{el}	A/C HP System Total kWh _{el}	SCOP (Includes Water Pumps)	Heat Pump System Total Cost€		Boiler System Total kWh _{el}	Burner Fuel Type	Diesel Energy kWh	Diesel Consumption kg	Boiler System Total Cost €
Jan	Yes	64,749	19,103	16,187	1.83	<mark>3,</mark> 882		73	Diesel Heating	79,662	6,700	8,484
Feb	Yes	61,446	17,942	14,953	1.87	3 <mark>,61</mark> 8		69	Diesel Heating	74,944	6,303	7,981
Mar	Yes	68,635	20,001	16,383	1.89	4,002		77	Diesel Heating	83,548	7,027	8,898
Apr	Yes	64,267	18,883	13,127	2.01	3,521		73	Diesel Heating	78,790	6,627	8,391
May	Yes	61,294	18,314	10,855	2.10	3,209		71	Diesel auto	76,153	6,405	12,200
June	Yes	52,647	15,623	8,454	2.19	2,648		60	Diesel auto	65,163	5,480	10,439
July	Yes	48,104	14,214	7,741	2.19	2,415		54	Diesel auto	58,669	4,934	9,399
Aug	Yes	47,239	13,961	7,718	2.18	2,385		53	Diesel auto	57,615	4,846	9,230
Sep	Yes	43,535	12,926	7,621	2.12	2,260		50	Diesel auto	53,565	4,505	8,581
Oct	Yes	45,856	13,531	9,005	2.03	2,479		51	Diesel Heating	55,605	4,677	5,922
Nov	Yes	49,354	14,781	9,814	2.01	2,706		57	Diesel Heating	61,422	5,166	6,541
Dec	Yes	56,179	16,685	12,980	1.89	3,263		64	Diesel Heating	69,269	5,826	7,377
Total		663,305	195,965	134,837	2.01	36,388		752		814,404	68,495	103,444
61XWHH7	7E03 Appual	Operating H	lours:	2 232	ר ה	Heating W	102	ther File	I [
		Operating I		2,232		99.6% DB °(-3.0		Fuel Type	Market Cost	Unit
Selected	# of Units 61	XWHHZE03 i	s:	1		MIN DB °C		-3.4		Electricity	0.11	€/kWh

Selected # of Units 61XWHHZE03 is:	1
Selected # of Units USX EDGE 60HP is:	2
Selected # of Boiler Diesel is:	1
A/C HP Possible Load Unmet Hours	0
Burner Boiler Possible Load Unmet Hours	0

Heating Weather File					
99.6% DB [°] C	-3.0				
MIN DB °C	-3.4				
MCWB WB °C	-4.0				
Cooling Weather File					
0.4% DB [°] C	34.8				
MCW B °C	21.7				
MAX DB °C	35.7				
MCWB WB °C	18.1				

Diesel Auto	1.58	€/lt
Natural Gas	0.50	€/m ³
Butane	1.40	€/kg
Propane	1.52	€/kg
Wood	15.00	€/m ³

Fuel Cost

1.05

€/lt

Diesel Heating

Number of Units

Weather Data

Questions

&

Answers

Contact us if there are any questions.

Thank you for your time!

Corporate Website

www.ahi-carrier.gr

Phone Number +30 210 6796300

Email Address

grinfo@ahi-carrier.eu